

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release. Distribution is unlimited.

UAV SWARM BEHAVIOR MODELING FOR EARLY
EXPOSURE OF FAILURE MODES

by

Michael B. Revill

September 2016

Thesis Advisor: Kristin Giammarco
Co-Advisor: Mikhail Auguston

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704–0188) Washington, DC 20503.
1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
September 2016

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
UAV SWARM BEHAVIOR MODELING FOR EARLY EXPOSURE OF
FAILURE MODES

5. FUNDING NUMBERS

6. AUTHOR(S) Michael B. Revill

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943–5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

Over the past decade, the Department of Defense has placed a great amount of attention on the
advancements of unmanned aerial vehicles (UAVs), and more specifically on employing a large number of
autonomous UAVs into “swarms.” These swarms form an organized cluster of vehicles to act out
multifaceted operations as a group. Despite the benefits offered by UAV swarms, there are hurdles that
engineering teams must grapple with while designing a UAV swarm system. One key area is creating and
understanding the swarming behavior and revealing all potential failure scenarios that may impact the
desired mission. This research uses Monterey Phoenix (MP) to model system behaviors by grouping them
into distinct, reusable agent-like models of possible actor behaviors and modeling actor interactions as
separate constraints. This approach affords the ability to compute every possible variation of actor
behaviors with every other possible actor behavior from these models, which generates an exhaustive set of
possible scenarios or event traces. Through manual inspection or semi-automated assertion checking of
these event traces, the discovery of unwanted and undesirable behaviors and failure modes is achievable,
which allows mission planners to then counteract these unsolicited instances with necessary failsafe
behaviors.

14. SUBJECT TERMS
swarm, search and rescue, behavior modeling, UAV, Monterey Phoenix, failure modes, failsafe
behaviors

15. NUMBER OF
PAGES

109
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release. Distribution is unlimited.

UAV SWARM BEHAVIOR MODELING FOR EARLY EXPOSURE OF
FAILURE MODES

Michael B. Revill
Civilian, Department of the Navy

B.S., Limestone College, 2007

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS ENGINEERING MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
September 2016

Approved by: Kristin Giammarco, Ph.D.
Thesis Advisor

Mikhail Auguston, Ph.D.
Co-Advisor

Ronald Giachetti, Ph.D.
Chair, Department of Systems Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Over the past decade, the Department of Defense has placed a great amount of

attention on the advancements of unmanned aerial vehicles (UAVs), and more

specifically on employing a large number of autonomous UAVs into “swarms.” These

swarms form an organized cluster of vehicles to act out multifaceted operations as a

group. Despite the benefits offered by UAV swarms, there are hurdles that engineering

teams must grapple with while designing a UAV swarm system. One key area is creating

and understanding the swarming behavior and revealing all potential failure scenarios

that may impact the desired mission. This research uses Monterey Phoenix (MP) to

model system behaviors by grouping them into distinct, reusable agent-like models of

possible actor behaviors and modeling actor interactions as separate constraints. This

approach affords the ability to compute every possible variation of actor behaviors with

every other possible actor behavior from these models, which generates an exhaustive set

of possible scenarios or event traces. Through manual inspection or semi-automated

assertion checking of these event traces, the discovery of unwanted and undesirable

behaviors and failure modes is achievable, which allows mission planners to then

counteract these unsolicited instances with necessary failsafe behaviors.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PROBLEM STATEMENT ...1
B. RESEARCH QUESTIONS ...2

II. BACKGROUND AND METHODOLOGY ..3
A. APPROACH TO RESEARCH ...3

1. Monterey Phoenix ..3
2. Emergent Behavior ..10

B. LITERATURE REVIEW ...12
C. SWARM DEFINED ...14

III. THE SEARCH AND RESCUE MODEL ..17
A. APPLICABLE UAV FOR SAR MISSION ...17
B. ACTORS ...19
C. THE COMPLETE DESIGN REFERENCE MISSION21

1. Scaled-Down Approach to Failure Mode Research22
2. Monterey Phoenix Version of SAR ..25

IV. FAILURE MODES AND FAILSAFE BEHAVIORS27
A. FAILURE MODES ..27

1. Autopilot Failure ..27
2. Bingo Fuel ...30
3. Control Surface Malfunction ..33
4. Ground Control Station (GCS) Loss of Link36
5. Loss of Global Positioning System (GPS)39
6. Loss of Link to Payload ...42
7. Geofence Breached...45

B. FAILURE MODE PRIORITIZATION ...49
C. PATTERNS ..54

V. ANALYSIS OF FINDINGS AND RESULTS ...57
A. KEY FINDINGS ..57

1. Event Trace Analysis ...57
2. Concurrent Failure Mode Modeling ..57
3. Failsafe Behavior Consistency and Commonality

Validation..58
B. SURPRISING AND UNEXPECTED OUTCOMES60

 viii

1. Bingo Fuel Emergent Failsafe Behavior60

VI. CONCLUSION ..69
A. BENEFITS OF STUDY ...69
B. ITEMS FOR FURTHER STUDY ..70

1. Bingo Fuel Expansion ..70
2. Inter-UAV Communications ...71
3. Swarm vs. Swarm Model Expansion ..71
4. Monterey Phoenix Phased Modeling Approach........................72
5. Cross-Domain Pattern Recognition..72

APPENDIX: MP CODE ..73

LIST OF REFERENCES ..85

INITIAL DISTRIBUTION LIST ...89

 ix

LIST OF FIGURES

Figure 1. MP Sequence Diagram and Event Trace View ..3

Figure 2. MP Code – Simple Message Flow Code ...5

Figure 3. MP Sequence Diagram – Simple Message Flow Model6

Figure 4. MP Code – Swarm vs. Swarm ...8

Figure 5. MP Sequence Diagram – Swarm vs. Swarm ...9

Figure 6. Swarm vs. Swarm Event Trace Graph ...10

Figure 7. PACOM Crimson Viper 2010 Exercise. Source: Perschbacher
(2010). ..11

Figure 8. SAR Operational View ..15

Figure 9. SAR Pre-Mission Startup Operations ..20

Figure 10. SAR Initial Launch ..21

Figure 11. MP Sequence Diagram – Swarm SAR CONOPS......................................22

Figure 12. MP Sequence Diagram – Abstracted SAR Model24

Figure 13. MP Sequence Diagram - Abstracted SAR Model (Scope = 2)25

Figure 14. MP Code – Baseline SAR Mission ..26

Figure 15. MP Code – Autopilot Failure ...28

Figure 16. MP Sequence Diagram – Autopilot Failure ...29

Figure 17. MP Sequence Diagram – Autopilot Failure (Scope = 2)30

Figure 18. MP Code – Bingo Fuel ..31

Figure 19. MP Sequence Diagram – Bingo Fuel...32

Figure 20. MP Sequence Diagram – Bingo Fuel (Scope = 2)32

Figure 21. MP Code – Control Surface Failure ...34

Figure 22. MP Sequence Diagram – Control Surface Failure35

 x

Figure 23. MP Sequence Diagram – Control Surface Failure (Scope = 2)36

Figure 24. MP Code – GCS Loss of Link ...37

Figure 25. MP Sequence Diagram – GCS Loss of Link ...38

Figure 27. MP Code – Loss of GPS ..40

Figure 28. MP Sequence Diagram – Loss of GPS ..41

Figure 29. MP Sequence Diagram – Loss of GPS (Scope = 2)42

Figure 30. MP Code – Loss of Link to Payload ..44

Figure 31. MP Sequence Diagram – Loss of Link to Payload45

Figure 32. MP Code – Geofence Breach ...47

Figure 33. MP Sequence Diagram – Geofence Breach ...48

Figure 34. MP Sequence Diagram – Geofence Breach (Scope = 2)49

Figure 35. Failure Mode and Failsafe Behavior Order of Operations51

Figure 36. MP Code – Combined Failure Modes ...54

Figure 37. MP – Failure Mode and Failsafe Behavior Pattern55

Figure 38. MP Sequence Diagram – Bingo Fuel (Initial Analysis)60

Figure 39. MP Sequence Diagram – Bingo Fuel (Initial Analysis)61

Figure 40. MP Code – Bingo Fuel (UAV Sacrifice) ...63

Figure 41. MP Sequence Diagram – Bingo Fuel (UAV Sacrifice)64

Figure 42. MP Sequence Diagram – Bingo Fuel (UAV Sacrifice, Scope = 2)65

Figure 43. MP Code – Bingo Fuel (UAV Relief) ...66

Figure 44. MP Sequence Diagram – Bingo Fuel (UAV Relief)67

 xi

LIST OF TABLES

Table 1. MP Event Patterns..7

Table 2. Zephyr II – UAS Data ..18

Table 3. Failure Mode Priority and Commonality ...52

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

CONOPS concept of operations

DOD Department of Defense

DODAF Department of Defense architecture framework

DRM design reference mission

FALT falconry alternate lure training

GCS ground control station

GPS global positioning system

GT greater than

LT less than

M&S modeling and simulation

MP Monterey Phoenix

PID person(s) in distress

RTL return to launch

SA SAR assets

SAR search and rescue

SOP standard operating procedures

SOS system of systems

UAS unmanned aerial system

UAV unmanned aerial vehicle

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

Since 2001, on an international scale, the United States military has had over 400

unmanned aerial vehicles (UAVs) and drones crash and create major accidents. The

drones failed because of issues with weather, mechanical components, human error, and

many other reasons (Whitlock 2014). The main goal of this research is to determine the

efficacy of modeling UAV failure modes and corresponding failsafe behaviors alongside

Search and Rescue (SAR) models. By placing these failure modes and failsafe behaviors

into concepts of operations (CONOPS) early in the mission planning life cycle, we are

able to identify pitfalls that would be otherwise costly and detrimental to the success of

the mission.

Today, the Department of Defense is moving to a more distributed approach to

using UAVs by employing multiple UAVs into swarms. Despite the benefits offered by

UAV swarms, there are hurdles engineering teams must grapple with while designing a

UAV swarm system. One key area is creating and understanding the swarming behavior

and revealing all potential failure scenarios that may impact the desired mission. This

research uses Monterey Phoenix (MP) to model system behaviors by grouping them into

distinct, reusable agent-like models of possible actor behaviors and modeling actor

interactions as separate constraints. This approach affords the ability to compute every

variation of actor behaviors with every other possible actor behavior from these models,

which generates an exhaustive set of possible scenarios. The amount of potential swarm

behavior states produced by MP far exceeds the number that a capable human could

manually generate and can be accomplished in a fraction of the time. Through manual

and semi-automated inspection of these event traces, the discovery of unwanted and

undesirable behaviors and failure modes is achievable, which allows mission planners to

then counteract these unsolicited instances with necessary failsafe behaviors.

Some of the UAV failure modes modeled in this research include payload loss of

link, loss of global positioning system (GPS), and autopilot failure. In planning for the

mitigation of risks and potential failures, certain assumptions are made about what

behaviors should be implemented to counteract these unintended consequences. For

 xvi

example, a reasonable failsafe behavior that was initially modeled for the loss of GPS

was to reduce throttle and attempt to land. After modeling this mitigation tactic and

several other failure modes in MP and inspecting the various event traces, a new failure

mode option became apparent. The early planning of the failsafe behavior for a payload

loss of link failure mode was to attempt to re-establish connection. After modeling both

loss of GPS and payload loss of link, the new failsafe behavior (attempt reconnection)

was implemented into the model. This research identifies a common failsafe behavior as

a recovery strategy for two UAV failure modes. After modeling all failure modes, the

process of failure mode prioritization started. Given the incremental approach to

modeling individual failures, it was not until this point that inconsistencies among similar

failsafe behaviors started emerging.

Monterey Phoenix makes the otherwise daunting task of understanding the

behavior of complex processes and systems manageable through rapid generation of

event traces. Commonality of failure mode recovery strategies is just one of several

benefits that MP afforded this modeling research effort. Others include the establishment

of a pattern for rapid failure mode modeling, understanding the prioritization of failure

modes, and a surprising emergent behavior from a bingo fuel scenario that inspired a

failsafe behavior that may have been otherwise overlooked until live experimentation or

testing.

References

Whitlock, Craig. 2014. When Drones Fall from the Sky. Washington Post.

http://www.washingtonpost.com/sf/investigative/2014/06/20/when-drones-fall-
from-the-sky/.

http://www.washingtonpost.com/sf/investigative/2014/06/20/when-drones-fall-from-the-sky/
http://www.washingtonpost.com/sf/investigative/2014/06/20/when-drones-fall-from-the-sky/

 xvii

ACKNOWLEDGMENTS

I cannot express enough thanks to my thesis advisor, Dr. Kristin Giammarco, for

her expertise, guidance, encouragement and patience throughout the process of

developing my thesis. She never hesitated to make time available to help me with a

difficult question or to get me back on track. I would like to thank Dr. Mikhail Auguston

for his assistance and direction with understanding Monterey Phoenix. Similarly, I would

like to thank Dr. Timothy Chung for his technical support and suggestions in the areas of

swarming concepts. Without the guidance each of these professors and advisors provided,

this research and resulting thesis would not have been possible.

I must give thanks to my IPT lead, Jason Livingston at SPAWAR Systems Center

Atlantic, for his patience with me through this two-year process. He worked with my

schedule and was very understanding of the demands that accompanied the research and

development of a thesis. Additionally, I would like to thank my co-worker and friend,

Paul Walter, for pushing me to pursue my master’s degree.

Finally, I would like to graciously acknowledge my family, the individuals who

have been directly and indirectly impacted by this extremely demanding journey. First, I

am forever indebted to my wife, Erin, and my two children, Morgan and Reece. Despite

what must have felt like an absentee husband and father, through the rigor and struggles

of completing this thesis, they not only continuously provided support and

encouragement, but also were my source of joy and inspiration. Also, my parents, Andy

and Kathy, have always believed in me and were there for Erin and me when we needed

support. I consider them my boosters that continuously pushed me to do my best.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. PROBLEM STATEMENT

The ability to understand how a single event can have cascading effects on

corresponding processes within a single system or system of systems can provide

invaluable benefit to a project, mission or program. This is especially true in unmanned

operations, where mission planners must understand the gravity of every behavior in a

large multiple agent operation. Whether in defensive, offensive or humanitarian

initiatives, future and some present day operations are moving rapidly toward the

employment of swarm operations to overwhelm or saturate the given objective through

“deliberately structured, coordinated, strategic way to strike from all directions, by means

of a sustainable pulsing of force and/or fire” (Arquilla and Ronfeldt 2013). In one-to-one

unmanned systems operations (i.e., one operator and one UAV), it is relatively simple for

the human brain to comprehend the multiple steps in an operation. Furthermore, it is

feasible for the human brain to understand how unexpected changes or behaviors can

impact a simple one-to-one ratio system. As we increase the volley of agents and start

utilizing swarms to accomplish otherwise easy-to-understand tasks, on an exponential

scale, the ability to calculate the impact of a single event on the swarm is lost, as

demonstrated in Chapter II.

In addition to understanding the expected or anticipated events of a system, it is

even more difficult to understand what impact a system component failure may have to

the system. Failure of a UAV is difficult to predict. A variety of system behavior models

have been used, but all have their limitations (Giammarco and Auguston 2013).

Unfortunately, the mitigation planning for failure modes is too often introduced later in a

project’s development cycle, which can have huge impacts on cost and schedule. In

swarm operations, improperly planning for the impacts of failures early in the life of a

project can result in catastrophic program or mission disasters.

 2

B. RESEARCH QUESTIONS

Often during the discovery of a problem, the next logical step is to hypothesize or

theorize remedies for an established problem. Assuming a specific solution too quickly

can present challenges and hinder the true understanding of the problem (Giammarco,

Hunt, and Whitcomb 2015). While a plethora of ideas and solutions may be applicable, to

address the problem of understanding how failures can impact complex systems, this

thesis uses the Monterey Phoenix (MP) modeling software to answer the following

research question:

Can the operational context and derived behavior of UAV swarm systems
be analyzed through Monterey Phoenix computational models and
simulations to reveal potential failure scenarios, and can failsafe behaviors
be generated to counteract the emergence of new failure modes?

The MP modeling environment provides a breakdown of all potential event traces.

Given that the research questions call for the revelation of potential failure modes, MP

was selected as the modeling environment because it provides a substantial set of results

and data, thus allowing the inspection of numerous possible outcomes. Refer to the full

description of MP in Chapter II.

 3

II. BACKGROUND AND METHODOLOGY

A. APPROACH TO RESEARCH

1. Monterey Phoenix

To provide an in-depth analysis of every possible permutation in a given scenario,

a behavior modeling approach, known as Monterey Phoenix (MP), is used for this failure

mode modeling research. MP is “a behavioral model for system and software architecture

specification based on event traces” (Farah-Stapleton and Auguston 2013, 271). With

explicit objectives and involvement from stakeholders, system architecture modeling is

an iterative process to refine the design of a system and ultimately link the requirements

to the implementation phases of the system (Auguston 2014). By leveraging MP, this

principle may be applied for any process-based system. The view of MP in Figure 1 is of

the graph view, which illustrates the ability to see all possible event traces for a given

scenario.

Figure 1. MP Sequence Diagram and Event Trace View

 4

Unlike many modeling approaches, MP provides the capacity to consider all

possible actors, or contributors, to a system. This includes contributors like direct and

indirect stakeholders, the environment, and other systems. By breaking out the actors as

separate entities, a system of systems approach becomes more practical to realize and can

be expanded or contracted as needed with little effort or impact to the overall model.

Furthermore, MP disconnects the concerns of system behaviors and system interactions,

which are traditionally interwoven as hard-coded constraints on multi-actor activity

models. These hard-coded constraints are typically limited to random or stochastic

simulations that address in contrast only a small subset of potential behaviors.

Monterey Phoenix is in large part a behavior modeling language, but it differs

from the traditional functions, components, and connectors by representing the main

concepts solely as activities and relationships between activities (Auguston 2016). In his

2016 language manual, Dr. Auguston lists many key concepts; below is a summarization

of the concepts relevant to this research.

A view of the architecture as a high level description of possible system
behaviors, emphasizing the behavior of subsystems (components) and
interactions between subsystems. MP introduces the concept of event as
an abstraction of activity.

The separation of the interaction description from the components
behavior is an essential MP feature. It provides for a high level of
abstraction and supports the reuse of architectural models. Interactions
between activities are modeled using event coordination constructs.

The environment’s behavior is an integral part of the system architecture
model. MP provides a uniform method for modeling behaviors of the
software, hardware, business processes, and other parts of the system.

The event grammar models the behavior as a set of events (event trace)
with two basic relations, where the PRECEDES relation captures the
dependency abstraction, and the IN relation represents the hierarchical
relationship. Since the event trace is a set, additional constraints can be
specified using set-theoretical operations and predicate logic. (Auguston
2016)

Specifically, for this research, MP is used to analyze, expose and understand how

failure modes impact a swarm. Monterey Phoenix changes the very method by which

 5

system behaviors are modeled by breaking them into discrete, object oriented agent

(actor) models made up of possible agent behaviors. This allows for the modeling of

failure modes woven into all swarm interactions as separate constraints and computes

every permitted permutation of actor behavior with every other possible actor behavior

automatically from these models, to generate an exhaustive set of possible scenarios up to

a specified scope limit. This automated scenario generation provides a huge set of data

for human inspection and assertion checking for the presence or absence of specific

failure modes of concern.

In MP, a system’s behavior is modeled as a collection of events. As Dr. Auguston

states above, there are two relationships that exist between events: precedes and includes.

For precedes, if one event must occur before another, a dependency is established.

Consider the simple message flow example in Figure 2, where the event of sending a

message must precede receipt. For includes, an event may include a subset of events.

Again represented in Figure 2, the event “Send” includes “Prepare Message” and “Send

Message.”

Figure 2. MP Code – Simple Message Flow Code

Through MP’s analyzer tool located at firebird.nps.edu, modelers are able to

generate a graphical representation of the possible event traces available from their

model. The green blocks represent the root events or actors of the model and the orange

and blue blocks correspond to events included in the roots. The orange blocks are

 6

composite events that are made up of blue blocks that correspond to atomic events. The

dashed arrows represent inclusion relationships within events and the solid arrows are

precedence relationships between events. For example, in Figure 3, the event “Send” is

made up of “Prepare Message” and “Send Message.” Since both are in the “Send” event,

a dashed arrow links “Send” to the nested events.

Figure 3. MP Sequence Diagram – Simple Message Flow Model

Monterey Phoenix also provides the ability to represent events in various patterns.

Table 1 describes the various patterns in both natural language and MP event grammar.

These patterns offer a reference for many of the patterns represented in this thesis

research.

 7

Table 1. MP Event Patterns

Pattern Natural Language Description Pattern Expressed as MP Event Grammar

Ordered sequence of events (B followed by C) A: B C;

Alternative events (B or C) A: (B | C);

Optional event (B or no event at all) A: [B];

Ordered sequence of zero or more events B A: (* B *);

Ordered sequence of one or more events B A: (+ B +);

Unordered set of events B and C
(B and C may happen concurrently)

A: { B, C };

Unordered set of zero or more events B A: {* B *};

Unordered set of one or more events B A: {+ B +};

Source: Mikhail Auguston, “MP Event Grammar,” accessed July 1, 2016,
https://wiki.nps.edu/display/MP/Event+Grammar.

a. Small Scope Hypothesis

Given the exhaustive set of scenarios generated, one of the most beneficial

features of MP is the ability to check or validate models. Model validation is not a new

technique, as it was originally “developed in the 1980s for analyzing protocols and

hardware designs that could be expressed as finite state machines” (Jackson 2006).

Model checking was proven to be extremely effective in identifying errors, which led to

the testing of unbounded system models. This new application introduced the notion of

scope considerations. The Small Scope Hypothesis (Jackson 2006) states that most errors

can be exposed on small examples or “that systems that fail on large instances almost

always fail on small ones with similar properties” and similarities between modeled to

actual systems are irrelevant.

Monterey Phoenix generates a finite number of event traces from a model

comprising potentially an infinite number of behaviors. By limiting the scope, the same

failures can be exposed by simulating only a small number, typically three, of iterations

on the model loops. Additionally, the number of event traces and trace generation time

 8

may increase on an exponential scale as the scope limit is increased (Auguston 2016).

Consider the following MP example of a simple air-to-air combat scenario between two

sets of swarms, each consisting of one or more UAVs, set by the scope limit. Per the

model, each UAV can only perform one attack operation, shoot the enemy UAV, which

can result in a hit or miss. As a resultant, each UAV can be destroyed or survive and

return to its base.

Figure 4. MP Code – Swarm vs. Swarm

 9

Figure 5. MP Sequence Diagram – Swarm vs. Swarm

When the scope limit is set to one (i.e., each swarm has only one UAV), MP

generates a small number of event traces. Like the Punnett square exercise, the possible

scenarios are fairly easy to comprehend, which are (a) both UAVs are destroyed, (b) both

UAVs survive, (c) the blue UAV survives and the red UAV is destroyed, and (d) the red

UAV survives and the blue UAV is destroyed. As the scope limit is increased, the

number of event traces grows drastically, see Figure 6. Again, considering the concept of

the small scope hypothesis, all scenarios and failure patterns should be identified at or

around scope limit three.

 10

Figure 6. Swarm vs. Swarm Event Trace Graph

Dr. Kristin Giammarco (2012) took the analysis of small scope hypothesis a step

further in her dissertation, “Architecture Model-Based Interoperability Assessment,” to

further test “that most flaws that appear in large instances with many variables and

relations also appear in smaller instances (fewer variables and relations).” Using the

Alloy Analyzer, her research checked for assertions spanning scopes on a sliding scale

from 3 to 20. With an exponential relationship, the number of variables and the time

required to solve the possible event traces escalated as the scope increased. The natural

assumption would be that confidence levels in the model would increase as the scope

increased. Through manual inspection and automated assertion checking, she was able to

prove that there were no new behaviors at scope 20 there were not also present at scope 3

(Giammarco 2012).

2. Emergent Behavior

Emergent behavior has received many different definitions across numerous fields

of study. According to Dyson, “Emergent behavior is that which cannot be predicted

through analysis at any level simpler than that of the system as a whole” (Dyson 1997).

He goes on to explain that after everything has been described, emergent behavior is what

remains. Consider the UAS operational demonstration at the PACOM Crimson Viper

2010 Exercise, where two emergent behaviors were observed. While a WASP UAV was

 11

executing a demonstrative search and track mission for senior DARPA leaders, a live,

large sea hawk tracked, engaged and disabled the WASP.

Figure 7. PACOM Crimson Viper 2010 Exercise. Source:
Perschbacher (2010).

The immediate reaction from the project team was disappointment. In attendance

was a DARPA Program Manager who had been working to establish a new approach to

counter UAS operations. He recognized this event as a desirable type of emergent

behavior and subsequently returned to DARPA to create the Falconry – Alternate Lure

Training (FALT) project, where live falcons were trained to track and engage WASP

UAVs.

The introduction and subsequent rapid growth of unmanned and autonomous

systems has had a significant impact on the predictability of the behavior of systems.

Furthermore, today’s unmanned systems are now part of a system of systems (SoS),

wherein not only are engineers and developers required to understand their specific

 12

product, they must now have a firm understanding of how their product fits into a

plethora of other systems, systems that are often new and potentially misunderstood.

As a result of this massive growth in unmanned systems development, modeling

and simulation (M&S) has become a critical tool in understanding the behavior of these

systems. When systems are modeled, they typically have one of two results, expected or

unexpected results, but there is often another way of viewing behavior as a subset of

expected and unexpected results, which may be considered emergent behavior.

There are many theories and discussions on how emergent behavior is discovered.

This research follows the approach described by Gore and Reynolds (2008), where

subject-matter experts are introduced early in the concept design “to test a hypothesis

about emergent behavior.” This approach uses “causal inference procedures to reveal

interactions of known abstractions in the model, which will cause emergent behavior.

Causal inferencing finds cause and effect relationships among observed variables,” which

explains or describes a set of observations (Gore and Reynolds, 2008).

 The opening example of emergent behavior during the PACOM Crimson Viper

2010 Exercise resulted from an unforeseen interaction with a known environmental

element. In order for MP to reveal this emergent behavior, wildlife may need to be

modeled as a separate actor that is capable of interacting with other actors. Monterey

Phoenix can indirectly help to expose this type of behavior by provoking the MP user’s

thought process. The mere presence of a general environmental element at a critical step

in an event trace may be enough to inspire thoughts about specific examples of

environmental elements. The involvement of subject-matter expertise can greatly assist in

this process.

B. LITERATURE REVIEW

In her paper presented to the Complex Adaptive Systems Conference, K.

Giammarco (2013) describes emergent behavior from a system of systems (SoS)

approach using MP. She explains how “the Monterey Phoenix (MP) system architecture

modeling framework can be used to structure independent models of task-oriented

 13

systems” followed by the introduction of these independent models into larger paradigms

to enable predictions of SoS behavior.

M. Auguston (2014), the developer of Monterey Phoenix, describes the behavior-

modeling role the MP framework plays in understanding system architecture and how it

aids in establishing a bridge between requirements and implementation.

Similar to the search and rescue (SAR) mission described in later sections, in his

Master’s thesis, S. Hunt (2015) establishes a baseline SAR mission for model-based

evaluation. This baseline model was evaluated across many modeling techniques,

including Monterey Phoenix.

K. Giammarco, M. Auguston, C. Baldwin, J. Crump, and M. Farah-Stapleton

(2014) presented the “Controlling Design Complexity with the Monterey Phoenix

Approach” paper to the Complex Adaptive Systems Conference, which aimed to

“describe how the Monterey Phoenix (MP) approach can be used to decompose a

complex problem into smaller, more manageable models.”

J. Pilcher (2015) analyzes MP as a tool to aid the Department of Defense

Architecture Framework (DODAF) to better understand and intercept errors earlier in the

design process. Interestingly, through her order-processing model, she was able to expose

an unwanted or unexpected emergent outcome (scenario ending in a waiting state)

through the MP model (Pilcher 2015).

V. Steward (2015) analyzed and compared two modeling tools, Innoslate and MP,

for a search and rescue (SAR) mission. During her research, she identified an emergent

behavior using MP, where a UAV returned to base too soon and did not search for

additional survivors or wreckage once one was found.

The knowledge gathered from this literature review provides a foundation for the

research performed in this thesis. The two examples of emergent behavior lay the

groundwork for exposing unwanted emergent behaviors in UAV swarm use cases.

 14

C. SWARM DEFINED

Minar, Burkhart, Langton, and Askenazi (1996) define a swarm as “a collection

of agents with a schedule of events over those agents” (Minar, Burkhart, Langton, and

Askenazi 1996). While there is no mention of the number of agents, the term “swarm”

implies there is more than one agent. As it relates to the military, the term swarm is

usually applied to a strategic battle operation through a purposefully arranged and

organized set of assets with the intent to attack from every direction. Whether near or far

away from the enemy line, this overwhelming approach is accomplished with the

defensible “pulsing” of navigable entities (Arquilla and Ronfeldt 2013). Unmanned aerial

vehicle systems operating as a swarm have useful applications in a myriad of possible

scenarios on and off the battlefield.

In this research, the focus is placed on the utilization of a group of UAVs

organized in a mesh-like structure to divide the workload of a search and rescue (SAR)

mission (Figure 8). Swarm-based SAR missions can be worked more rapidly by

blanketing more of the search area when the collection is spread out. Through

redundancy, swarms can increase the chances of success mission execution. If a UAV

drops out or crashes because of mechanical failure, the rest of the group can take over

and complete the mission (Frantz 2005).

 15

Figure 8. SAR Operational View

The traditional definition of a swarm, as discussed above, does not necessarily

apply to the MP modeling approach used in this research, which allows for the scope of

the swarm size to be as small as 1 UAV. Therefore, due to this scope-based modeling

approach defined in the small scope hypothesis section, the number of UAVs in a swarm

is comprised of one or more assets.

 16

THIS PAGE INTENTIONALLY LEFT BLANK

 17

III. THE SEARCH AND RESCUE MODEL

Swarm UAV missions encompass simultaneously flying UAVs in autonomous

and coordinated flight modes, such as waypoint following or sensor-based navigation. To

adequately test and analyze findings during model evaluation a baseline or design

reference mission (DRM) model is created. Specifically for this thesis, a swarm-based

search and rescue (SAR) mission is established. The concept of the SAR mission is

familiar, which enables the focus to be on the recognition of emergent behaviors.

A. APPLICABLE UAV FOR SAR MISSION

From fixed-wing to multi-rotor, there are many different types of UAVs that can

accomplish a SAR mission. The behaviors, failure modes and corresponding failsafe

behaviors can be considerably different for each airframe. Consider the failure mode of a

low battery or fuel for a fixed-wing and a quad-rotor UAV. A potential failsafe behavior

for the fixed-wing aircraft may be to reduce throttle and glide until it is safe to land. For a

quad-rotor, or any multi-rotor aircraft, gliding is not an option. Thus, a solution-specific

approach for failure modes cannot be universal for all UAV types. For the purposes of

this research, the Zephyr II UAV will be considered in all modeling scenarios. See Table

2 for specific aircraft specifications and characteristics.

 18

Table 2. Zephyr II – UAS Data

Feature Value

UAS Name Zephyr II

Manufacturer Rite WingRC

Wing Span 56 in.

Length 15.5 in.

Dry Weight 5.5 lbs.

Max Gross Weight 7.0 lbs. (1.5 lbs. payload capacity)

Max Speed 40 m/s

Cruise Speed 18 m/s

Stall Speed 10 m/s

Endurance 60 minutes (May vary, depends on type of batteries used)

Engine Brushless 1300 kV or similar

Fuel Two – Four 11.1V LiPo batteries (connected in parallel)

Max Range 40 km (May vary, depends on type of batteries used)

Communications 2.4 – 2.48 GHz, up to 30 Mbps
902 – 928 MHz, up to 115.2 kbps

Default Payloads
Mesh network router
PC104 or ODroid computer
GoPro Camera

Source: Michael Day, Naval Postgraduate School (personal communication, 2014)

Dr. Timothy Chung (2014) explains that each Zephyr II aircraft has a primary

flight control systems that is managed by an autopilot module known as ArduPilot.

ArduPilot is separate from the swarming control system developed by NPS. Each aircraft

is an independent agent in the swarm, and is required to synchronize with other swarming

agents: “Failsafe behaviors on agents in a swarm are managed the same way as “single

plane sorties” (Chung 2014).

 19

B. ACTORS

When modeling swarm-based SAR missions, the capacity exists for a large

number of agents or actors operating both individually and as a group within the model.

The following list describes a potential set of actors for a conceptual swarm-based SAR

mission.

• Flight Crew – The Flight Crew is an encompassing term that refers to the
personnel necessary to manage all logistical aspects required during a
SAR mission.

• Swarm – The Swarm is an encompassing term, but only refers to the finite
collection UAVs assigned to the active SAR mission.

• Mission Commander – The Mission Commander is the individual in
charge of all swarm operations for the SAR mission.

• Swarm Operator – The Swarm Operator works very closely with the
Mission Commander and is the individual responsible for piloting the
swarm. While still required, this position can become marginal as the size
of the swarm grows. Large quantities of UAV must operate with a high
level of autonomy and “increasing the autonomy of unmanned platforms
could reduce the number of operators per vehicle, thus simplifying the task
of the operating crew controlling vehicles involved in complex missions
and potentially reducing costs” (Rabbath, Alain, and Léchevin 2010).

• Range Control – Range Control receives a briefing on mission planning
and is notified of launch and landing attempts

• Safety Coordinator – The Safety Coordinator executes prefight checklists,
verifies the environmental conditions and provides valuable information to
the Mission Commander.

• Physical Environment – The Physical Environment encompasses all
external factors that are outside of the control of machine and human
actors. While this is not an obvious actor, it plays a vital role in modeling
behaviors of systems. Chances of receiving inaccurate results are greatly
increased if this is not included.

• Person in Distress (PID) – A PID is any single or group of individuals that
require aid through the SAR mission.

The interactions between each actor, which can be interactions among many, can

quickly become detailed and complex. Even at the smallest subroutines of a SAR

swarming mission scenario, the potential number of exchanges can be overwhelming. Dr.

 20

Chung explains that flight plans for all simultaneously operating aircraft are reviewed

prior to takeoff and confirmed by Swarm Operator and Mission Commander. Unmanned

aerial vehicles communicate wirelessly with each other, subject to constraints of LOS and

range, to share information like telemetry and sensor data to facilitate use of coordination

algorithms. Compact telemetry data is provided to the Swarm Operator for situational

awareness of all aircraft (Chung 2014). The activities are just a few behaviors performed

by a large collection of actors. Figures 9 and 10 illustrate some of the potential

subroutines of a SAR mission scenario.

Figure 9. SAR Pre-mission Startup Operations

 21

Figure 10. SAR Initial Launch

C. THE COMPLETE DESIGN REFERENCE MISSION

When these interactions are modeled together to form a complete SAR mission,

an intricate set of events and interactions between and across multiple actors begin to

appear. As illustrated in Figure 11, the Mission Commander and Swarm Operator have

multiple interactions with almost all actors in the model.

 22

Figure 11. MP Sequence Diagram – Swarm SAR CONOPS

1. Scaled-Down Approach to Failure Mode Research

Inserting failure modes directly into the complex SAR mission referenced in the

previous section can prove to be futile. The number of interactions can quickly

overwhelm the desired outcome of learning from failure mode insertion.

 23

Alternatively, a more useful approach is scale the model down to key interactions

that allow for the seamless insertion of failure modes. This does not mean the model

becomes less representative of the desired event traces. A system of systems analysis

approach can aid in producing a succinct and focused model capable of accepting

relevant failure modes. As discovered through various modeling iterations, the author

considered three main approaches to scaling down the model through various modeling

iterations: isolated model extraction, phased model extraction, and model abstraction.

Isolated model extraction is selecting a specific subsystem within a model and

performing analyses on that single subsystem. This approach can be especially useful

when the interactions and behaviors being observed have little to no impact on any linked

systems. Through examination and discovery, patterns active at the system level, are

repeated at the subsystem level and in successive layers until all common information is

extracted. Therefore, the modeled system in MP contains a distinct layer of structure and

function (Garcia 2015). Model extraction can present major issues, as it is difficult to

isolate a failure mode to a single subsystem. When employing model extraction as an

approach to scaling down a model, it is paramount that a thorough trace study be

performed to determine trickle-down impacts to other systems.

Similar to model extraction is a phased extraction approach, where an activity or

process is broken down into phases before any models are actually executed. Each phase

is treated and analyzed independently for failure modes unique to the respective phase.

This approach drastically reduces the number of event traces that would normally be of

no interest to other phases in the sequence. If the same behavior is present in more than

one phase, that behavior will need to be represented across each applicable phase

instance. This requires significant planning and decomposition to ensure incorrect

assumptions are not made during the modeling process.

Used primarily in this research, the model abstraction approach attempts first to

break a model down into its major interactions. Once these interactions are determined,

the detail for each interaction is reduced. “Abstracted systems are simplifications of more

complex dynamical systems that retain some important information, such as

controllability, about the original system” (Mellodge and Pushkin 2008). For example,

 24

the SAR model in Figure 12 is a scaled down version of the complete DRM featured in

the previous section. This simplified representation allows for the streamlined or

algorithm-based introduction of failure modes. Upon execution, MP presents every event

trace combination, making it possible quickly and easily to identify scenarios where a

particular failure mode may influence a system. If a model is too complex, as in the

complete SAR DRM, failure modes may become hard to discern.

Figure 12. MP Sequence Diagram – Abstracted SAR Model

 25

Figure 13. MP Sequence Diagram - Abstracted SAR Model (Scope
= 2)

In Figure 13, the scope is changed to 2, which illustrates how MP is capable of

modeling a number of assets and separate missions on a sliding scale. In this event trace

example, one UAV does not find any targets to analyze and subsequently ends the

mission, while the other UAV finds and tracks a valid target.

2. Monterey Phoenix Version of SAR

Monterey Phoenix “represents an event as an abstraction of an activity, the

behavior of a system can be modeled as a set of events with two binary relations defined

for them” (Farah-Stapleton and Auguston 2013, 273) and uses an event grammar that

allows for the compact specification of behavior for each component (Giammarco and

Auguston, 2013). This binary relationship is represented in Figure 13 where the swarm

operator has the monitor mission task that is composed of a subroutine. When called, this

subroutine requires the swarm operator to assess a detected object, followed by the binary

decision of verifying the object’s validity. This binary decision process aids in the failure

mode and failsafe behavior analysis discussed in the next chapter.

 26

Figure 14. MP Code – Baseline SAR Mission

 27

IV. FAILURE MODES AND FAILSAFE BEHAVIORS

This chapter presents a description and analysis of many potential SAR UAS

failure modes and corresponding failsafe behaviors using the Monterey Phoenix (MP)

modeling tool. It is important to note, failsafe behaviors do not always link back to the

source failure mode in a one-to-one ratio. Often, failsafe behaviors can be mission driven,

which means the failsafe behavior for one mission (e.g., SAR) may not be applicable to a

failure mode in a different mission. For the purposes of this research, failsafe behaviors

are specific to Swarming SAR missions. The baseline SAR model does not produce a

substantial number of event traces as the scope is increased. This is partially caused by

the high level model chosen for analysis and to aid in understanding the failure modes in

a somewhat isolated approach of breaking each failure mode out by itself.

A. FAILURE MODES

1. Autopilot Failure

Many UAV missions involve some characteristic of waypoint navigation, which

is the preprogrammed or live planning and deliberate guidance of a UAV’s path during

flight. An autopilot failure mode is an electronics failure that occurs if the UAV fails to

adhere to navigation planning, primarily during waypoint navigation.

Failsafe behavior: In a swarm environment, an autopilot failure can have

devastating impacts to the entire swarm. Depending on the proximity of nearby assets,

the failing UAV can collide with other UAVs, enter into prohibited territories, or create a

safety hazard for nearby personnel. Therefore, the optimal failsafe behavior for an

autopilot failure scenario is to first attempt to take over manual control if the support is

present. If that is not feasible, the UAV should immediately reduce altitude and land. The

landing method is a mission driven behavior that does not warrant decomposition at this

level of abstraction. Refer to Figures 15 and 16 for the MP codes used and an example

event trace generated from the model.

 28

Figure 15. MP Code – Autopilot Failure

 29

Figure 16. MP Sequence Diagram – Autopilot Failure

As displayed in the sequence diagram in Figure 17, MP affords the ability to

adjust the size of the search team or UAVs in this case. Despite that one UAV enters into

an autopilot failure mode, all relevant actors are still traced to their cascaded behaviors

and other actors. For example, the swarm operator is responsible for monitoring the

mission of all active assets. This includes checking for the validity of detected targets and

issuing track or recovery commands, even if they are to occur simultaneously. Therefore,

in this example, when the failed UAV is given the command to return to launch, MP

continues to trace the other responsibilities of the swarm operator.

 30

Figure 17. MP Sequence Diagram – Autopilot Failure (Scope = 2)

2. Bingo Fuel

Whether powered by a gas or onboard batteries, UAVs are and will always be

limited by the inherent range of their fuel source. “Bingo fuel” is the calculation of the

point at which there is just enough fuel to make it to the pre-designated landing location,

which can be the original launch or some other rendezvous location. Some may not

consider this a failure mode in the traditional sense, as failure modes are typically

unanticipated scenarios. While bingo fuel can and should be a predicted behavior, for the

purposes of this research, a bingo fuel failure mode is considered an abnormal event that

occurs long before the anticipated bingo fuel range. For example, the Zephyr II has a max

range of 40 km and an endurance of 60 minutes. If 20 minutes into the flight the Zephyr

II enters bingo fuel, this would be considered an unanticipated and abnormal event that

would need to be mitigated through a appropriate failsafe behavior.

Failsafe behavior: The assumption in a bingo fuel situation is that the operator or

autonomous system still has complete command and control over flight operations. This

 31

failure mode characteristic allows for great flexibility in failsafe options. The most

common failsafe behavior for bingo fuel is return to launch (RTL), a predetermined

landing area or autonomously land.

Figure 18. MP Code – Bingo Fuel

 32

Figure 19. MP Sequence Diagram – Bingo Fuel

Figure 20. MP Sequence Diagram – Bingo Fuel (Scope = 2)

 33

3. Control Surface Malfunction

There are many critical systems like motors, sensors and onboard computers that

enable a UAV to take flight. All of these components are inconsequential without the

actuators and control surfaces. A control surface malfunction is a mechanical failure

impacting UAV actuators like ailerons, elevators, rudders and propellers.

Failsafe behavior: The unfortunate reality about control surface failures is the

operator does not have many options as it relates to failsafe behaviors. There are

mitigation techniques that can be employed to avoid complete loss of the air vehicle.

Many of these require rebooting the electronics that control the failed surface component,

fully actuating the failed surface component in both abduction and adduction extremes

and a combination of both. The following MP code and corresponding graph in Figures

21 and 22 executes a tiered approach where multiple failsafe behaviors are tried before a

controlled crash is attempted. Given the compound implications of this failure, even if the

failure is mitigated through either of the failsafe behaviors, the UAV is directed to return

to launch (RTL) for evaluation.

 34

Figure 21. MP Code – Control Surface Failure

 35

Figure 22. MP Sequence Diagram – Control Surface Failure

 36

Figure 23. MP Sequence Diagram – Control Surface Failure (Scope
= 2)

4. Ground Control Station (GCS) Loss of Link

“Drones are dependent on wireless transmissions to relay commands and

navigational information. Those connections can be fragile. Records show that links were

disrupted or lost in more than a quarter of the worst crashes” (Whitlock, 2014). For a

swarm mission scenario, a GCS is used heavily in centralized and hybrid command and

control setups. When a loss of link occurs, the swarm operator loses the ability to direct

the swarm. The introduction of autonomy into swarms has helped mitigate this risk, but

there will almost always be a need for operators to have some supervised autonomy

control over the swarm, which will require a GCS or some other medium. For the

purposes of this research, a 1:1 GCS to UAV ratio is used when modeling the failure

mode.

 37

Failsafe Behavior: With many failure modes, the UAV should attempt some auto-

correction behaviors before assuming the failure is irreversible, which is the case with a

GCS loss of link scenario. For example, when a UAV loses its link to the GCS, a

recursive check for loss linkage may occur for a predetermined N minute timeframe (e.g.,

two minutes). If the timeframe expires and the GCS link has not reestablished

connection, the failsafe behavior is enacted.

LT = less than and GT = greater than

Figure 24. MP Code – GCS Loss of Link

 38

LT = less than and GT = greater than

Figure 25. MP Sequence Diagram – GCS Loss of Link

 39

LT = less than and GT = greater than

Figure 26. MP Sequence Diagram – GCS Loss of Link (Scope = 2)

5. Loss of Global Positioning System (GPS)

Aerial vehicles have relied on GPS since its introduction. GPS provides both the

operator and UAV with extremely accurate information on location. When a UAV loses

the ability to use GPS, it becomes unaware of its coordinate-based location in the sky,

which “result in inaccurate positions, and can have important consequences in dense

urban terrain” (Rabbath, Alain, and Léchevin 2010) and other heavily populated areas.

Failsafe Behavior: Losing GPS is handled much like the GCS loss of link failure

mode. When losing GPS, the UAV should also attempt to reconnect, but on a much

shorter timetable. An abbreviated timetable (e.g., 20 seconds) is required due the safety

implications of losing GPS. Depending on the speed and direction, without GPS the UAV

can quickly waver into high-risk territories. Once this timetable has expired, the UAV

should kill the throttle, forcing a controlled crash. Furthermore, if GPS connection is

reestablished, the UAV should immediately return to launch for evaluation.

 40

LT = less than and GT = greater than

Figure 27. MP Code – Loss of GPS

 41

LT = less than and GT = greater than

Figure 28. MP Sequence Diagram – Loss of GPS

 42

LT = less than and GT = greater than

Figure 29. MP Sequence Diagram – Loss of GPS (Scope = 2)

6. Loss of Link to Payload

Unmanned aerial vehicles serve many purposes and the payloads they employ

make those purposes possible. Specifically for SAR missions, imaging payloads are

considered integral to the success of the mission. To mitigate payload failures, there are

many design factors to consider, which include (Johnson, 2012):

• available mass, volume and power budgets

• video interfaces and available wires

• bandwidth

• mission duration

• slant range or distance from UAV camera to target

• on-board image processing

 43

To complicate matters, consider what is needed to deliver narrow-field-of-
view, quality video from a small aircraft. The platform is moving,
vibrating, and subject to random and uncontrollable motion of the aircraft.
The line of sight for the delivered video needs to point at the object of
interest on the ground, hold on that object of interest while the aircraft is
flying its course, and be immune to input disturbances that would cause
the camera’s line of sight to move. (Johnson, 2012).

The overwhelming need for failsafe behaviors among payloads quickly becomes

apparent.

Failsafe Behavior: “Electronics failures are reported for about 25% of all failures,

the rest being attributed to weather and pilot error” (Caswell and Dodd, 2014). Therefore,

the first failsafe behavior to activate during a payload loss of link failure is to cycle or

reboot the payload controller. If a reboot does not correct the issue, the next step in the

process is to bring the UAV home, or RTL, for troubleshooting. If the payload failure has

resulted in a GCS loss of link, the UAV should autonomously land.

 44

Figure 30. MP Code – Loss of Link to Payload

 45

Figure 31. MP Sequence Diagram – Loss of Link to Payload

7. Geofence Breached

Whether manned or unmanned, most SAR missions are constrained by a search

area perimeter. Through algorithmic perimeter planning, a search area is defined based on

the highest probability of success. This area can expand exponentially as each hour

passes. In UAV terminology, this perimeter is known as a geofence, or a virtual barrier

that constrains the air vehicle to a certain area. With unmanned swarm missions, a

geofence is usually defined by highest area for probability of rescue or by command and

control communication limitations. A geofence breach occurs when one of the UAVs

exits the predefined geofence boundary. A breach can have serious safety implications

and must be handled immediately. Furthermore, a breach resulting in the loss of

communications is difficult to reverse. To avoid complete communications blackout, the

 46

area defined by the geofence may be reduced to provide a communications buffer just

outside of the geofence.

Failsafe Behavior: When a UAV ignores a directive to remain within a defined

area, it is assumed that something rather significant is occurring within the UAV’s

autopilot control. Therefore, the default failsafe behavior for a geofence breach is to take

over manual control of the air vehicle and return it to the launch location. If manual

override is unsuccessful, the follow up failsafe behavior is to kill the throttle and enter

into a controlled crash.

 47

Figure 32. MP Code – Geofence Breach

 48

Figure 33. MP Sequence Diagram – Geofence Breach

 49

Figure 34. MP Sequence Diagram – Geofence Breach (Scope = 2)

B. FAILURE MODE PRIORITIZATION

The previous section described a detailed analysis of potential failure modes and

failsafe behaviors through building isolated MP models. When planning for potential

failure modes and corresponding failsafe behaviors, it is important to place priorities or

weights to each failure mode. Whether the failure mode monitoring software is active or

passive, most UAV health monitoring systems use an order of operations or flow chart

approach to determine the best mitigation strategy for a given failure mode. These

automatic systems can be developed and integrated onboard a UAV to reduce its

vulnerability to errors and failures in the actuators, control surfaces and sensors (Rabbath,

Alain, and Léchevin 2010). As detailed below, there are multiple reasons for this

requirement.

 50

• Catastrophic failure modes: There are certain disastrous failure modes

that, upon occurrence, must be dealt with immediately and all other failure

modes become trivial.

• Simultaneously occurring failure modes: It is not uncommon for failure

modes to emerge concurrently, forcing a decision on which failure mode

should be treated first. This is one of the key benefits to using an order of

operations approach for health monitoring. As seen Figure 35, there is no

situation where two or more concurrent failure modes can break the

model.

• Shared failsafe behaviors: In taking a more object-oriented approach, there

are several failure modes that have the same failsafe behavior (e.g., Return

to Launch). An order of operations allows for the declaration of one

failsafe method for multiple failure modes.

 51

Figure 35. Failure Mode and Failsafe Behavior Order of Operations

To expand further, MP can be used in an object-oriented prioritization approach

to evaluate the impact of numerous potential failure modes. After an exhaustive list of

 52

potential failure modes and failsafe behaviors has been identified, they should be

analyzed and prioritized. Through numerous modeling tests, prioritization tends to follow

a more drastic to less drastic failsafe behavior pattern. In Table 3, all failure modes

ranked near the top share the failsafe behavior of controlled crash. Once priorities have

been assigned, each behavior should be reviewed for commonality. Specifically, failsafe

behaviors have a strong possibility of replication, which allows the modeler to generate a

single method to address multiple failure mode scenarios. For example, both a geofence

breach and loss of GPS share the failsafe behavior to enter a controlled crash.

Table 3. Failure Mode Priority and Commonality

Rank Failure Mode Failsafe Behavior Controlled
Crash

Auto
Land RTL

1 Control Surface

Controller Reboot
 - Failure Remains?
 Yes: Component Actuation
 - Failure Remains?
 Yes: Controlled Crash
 No: Return to Launch
 No: Return to Launch

X X

2 Autopilot

Attempt to take Manual Control
 - Manual Control
 > Return to Launch
 - No Manual Control
 > Controlled Crash

X X

3 Loss of GPS

Attempt Reconnect
 - Reconnected
 > Return to Launch
 - Not Reconnected
 > Longer than 20 seconds?
 Yes: Controlled Crash

X X

4 Geofence Breached

Take Manual Control
 - Manual Control Failed
 > Controlled Crash
 - Manual Control Success
 > Return to Launch

X X

5 GCS Link Loss

Attempt to take Manual Control
 - Manual Control
 > Return to Launch
 - No Manual Control
 > Auto Land

 X X

6 Payload Link Loss

Controller Reboot
 - Failure Remains?
 Yes: GCS Linked?
 No: Auto Land
 Yes: Return to Launch

 X X

 53

Rank Failure Mode Failsafe Behavior Controlled
Crash

Auto
Land RTL

 No: Resume Target Search

7 Bingo Fuel

Check Fuel Level
 - Enough to Return?
 > Return to Launch
 - Not Enough to Return?
 > Auto Land

 X X

The following MP model combines the failures modes defined in Table 3 through

a prioritized and object-oriented methodology. On the UAV, these checks would occur in

a feedback loop with a heartbeat-like return of the UAV’s status. The status would most

likely indicate a normal operation or presence of failure. Many of the failures have

automatically engaged failsafe behaviors, while others require the intervention of a

human operator to make a decision on how to proceed. To avoid the chance of ignoring a

high priority failure mode, the loop continues to check for failure modes, despite the state

of the current failure. This allows for the interruption and reassignment of tasking.

 54

Figure 36. MP Code – Combined Failure Modes

C. PATTERNS

The list of potential failure modes can grow much larger than the seven descried

in the previous section. Through the iterations of failure mode insertions and analyses, a

common pattern emerged, and once recognized, made it easier to understand the impact a

 55

failure mode can have on an a set of event traces. In MP, a failure is presented as an

alternative event that can occur based on where the failure mode is placed within the

model. If a failure is place at the root level for a sequence of events, the failure will

override the entire operation, as with many of the SAR mission failure modes presented

in this thesis.

Figure 37. MP – Failure Mode and Failsafe Behavior Pattern

These patterns for failure mode insertion provide a basis for understanding and

planning for failure mode analysis in MP. This pattern is used in several of the failure

modes presented in the previous section, but is not a one-size-fits-all approach. Though

 56

discovering patterns and formulas make complex tasks easier, it is import to remember

that as patterns are realized, complacency and assumptions are avoided. This mode of

thinking is similar to the patterns a medical doctor follows every time a diagnosis is

made. If steps are skipped or forgotten about due to complacency, the consequences can

be devastating.

 57

V. ANALYSIS OF FINDINGS AND RESULTS

A. KEY FINDINGS

1. Event Trace Analysis

When the behaviors between actors are effectively modeled in MP, the analytical

benefits are realized as the modeler steps through each event trace. Through this ability to

view every possible interaction, anomalies and abnormalities in the modeled behaviors

can be revealed. There are additional capabilities offered by MP that make this process

even easier.

Assertion Checking: As with any modeling approach, the models and underlying

programing needs to be debugged. Given the exhaustive set of event traces produced by

MP, this can be a rather overwhelming. Monterey Phoenix offers the CHECK construct

that was used in this research to automate the event trace monitoring. This assertion

checking approach marks any traces that violate an assigned Boolean expression

(Auguston 2016). Once the model was proven to be efficient and bug free these CHECKs

were removed.

Trace annotation: For this research the CHECK clause provided the level of detail

necessary to adequately debugging the SAR models. In more complex models, MP also

offers trace annotations to make messages more specific and focused. Instead of a generic

message about what is occurring, variable-based values from the model are also captured

in the message.

 CHECK #Assess_Detected_Object FROM Swarm_Operator ==
 #Object_is_Valid_Target FROM Swarm_Operator
 ONFAIL SAY(“Object is not valid”);

2. Concurrent Failure Mode Modeling

As mentioned in the section on “Failure Mode Prioritization,” it is beneficial to

prioritize and continuously check for failure modes in a loop. When considering the

programming logic that would be required to create this heartbeat like feedback loop, the

 58

most efficient approach is to bundle these potential failure scenarios into a single module

or class.

Through studying the benefits of using MP to inspect the impact of failure modes

on a swarm, it was ultimately determined that MP is much more powerful when

analyzing each failure mode in a phased approach, where each failure mode is modeled in

an isolated manner. When every failure mode and failsafe behavior is modeled

concurrently, the ability to inspect the impacts becomes extremely difficult. Furthermore,

it becomes a practice in futility as the scope is increased on a simultaneous analytical

modeling approach.

3. Failsafe Behavior Consistency and Commonality Validation

As revealed during this research, failure modes may require mitigation through

common failsafe methods. This is not necessarily a discovery, but more of a hypothesis

or assumption that the majority of failure modes are distinctive in their behaviors, but

often, assumptions cloud the researchers ability to recognize emergent patterns between

failsafe behaviors.

Once the Monterey Phoenix recipe for modeling failure modes and failsafe

behaviors was understood, a systematic and methodical approach was taken to model

each failure mode in an isolated environment against the baseline SAR mission. This

approach was an iterative process contained within each failure mode analysis period.

Once it was determined that a failure mode had reached its optimal modeling solution,

the next failure mode analysis period began.

After modeling all failure modes, the process of failure mode prioritization

started. As discussed in the prioritization section, setting an order of precedence is

necessary to properly handle the more significant or detrimental failure modes first.

Given the incremental approach to modeling individual failures, it was not until this point

that inconsistencies among similar failsafe behaviors started emerging.

An example of a situation where an inconsistency was identified can be seen in

the analysis of the failure modes, “payload loss of link” and “geofence breach.” During

 59

the examination each, the failsafe behavior “return to launch” (RTL) was identified.

While this is a logical behavior for both scenarios, the geofence breach failure is possibly

tied to erroneous waypoints and the RTL failsafe behavior included clearing out all

waypoint before returning to launch. The payload loss of link failure also had a failsafe

behavior of RTL, but while the clearing of waypoints is also applicable, it was not

included. It was not until these failures were modeled together that a common RTL

method was identified that applied to all RTL behaviors.

From this lessons learned activity, a new “failsafe behavior consistency

validation” method to planning for failure modes was developed. In contrast to analyzing

each failure mode and corresponding failsafe behavior in a vacuum, failure modes

modeled and examined together in a staged approach appear to provide greater benefit. In

this research, for example, the failure mode identification, failure mode model placement,

failure mode impact analysis, and failsafe behavior employment could be used as

consistency and commonality validation stages. Instead of iterating through each failure

mode and failsafe behavior individually, all failure modes would work through each stage

concurrently. A new hypothesis for this phased approach could be written as the

following:

Failure mode and failsafe behavior consistencies are simplified if each
step to analyze individual failure modes is staged and all failure modes
iterate through each stage concurrently.

Employment of the above hypothesis predicts that common failsafe behaviors will

be identified earlier in the analysis process, thus allowing for more rapid model

optimization. Recognizing common failsafe behaviors across all failure modes creates a

shared method for each failure mode to call that provides an object-oriented approach for

failure modes to leverage. Additionally, as new failure modes are discovered, the

recreation of failsafe behaviors may become unnecessary.

Another example of this approach is demonstrated in Table 3: Failure Mode

Priority and Commonality. The failsafe behaviors, auto land, controlled crash, and return

to launch became methods for all other failure modes to call if the behavior was

applicable.

 60

B. SURPRISING AND UNEXPECTED OUTCOMES

1. Bingo Fuel Emergent Failsafe Behavior

As seen in Figure 38, during initial examinations of the “bingo fuel” failure mode,

the obvious failsafe behavior was to return home or auto land. After close examination of

the event traces generated from the model (see Figure 39), there were instances where the

UAV would return to launch right after finding a potential target. This was not

necessarily a modeling error but more of an identification of emergent or better-suited

behavior.

Figure 38. MP Sequence Diagram – Bingo Fuel (Initial Analysis)

 61

Figure 39. MP Sequence Diagram – Bingo Fuel (Initial Analysis)

Failsafe behaviors are often necessary deviations from behaviors considered

detrimental to the mission. Many may conclude that a failsafe behavior that is not

triggered correctly consequentially becomes a failure mode. This may hold true in most

situations where the value of the asset, or UAV in this research, is more valuable than the

mission. When the value of the mission is greater than the assets involved, there lies a

great opportunity for the emergence of new behaviors.

When unmanned swarms of UAVs are performing SAR missions for lost humans

(e.g., at sea), the value of the mission is most definitely more valuable than the asset. In

this situation, it’s important to reevaluate the failure modes and consider how the mission

may better be served if adjustments were made to the failsafe behaviors. Again, in the

 62

case of the bingo fuel failure mode, once this reexamination occurred, two emergent

behaviors were realized.

Sacrifice the UAV – As discussed in the failure modes section, when a bingo fuel

event occurs, there is just enough fuel to return to launch or some predetermined location.

In this scenario, when the UAV enters bingo fuel, the new failsafe behavior is to reassess

the SAR environment before returning to launch. If during that reassessment a target or

person in distress (PID) is identified, the swarm operator has the option to allow the UAV

to continue tracking the target. Of course, this will ultimately result in the expiration of

onboard fuel and loss of aircraft. That result pales in comparison to the benefits gained

from added tracking details on a lost target, which may result in lives saved. Figures 40

and 41 illustrate the new MP model and sample event trace containing the new failsafe

decision.

63

Figure 40. MP Code – Bingo Fuel (UAV Sacrifice)

64

Figure 41. MP Sequence Diagram – Bingo Fuel (UAV Sacrifice)

 65

Figure 42. MP Sequence Diagram – Bingo Fuel (UAV Sacrifice,
Scope = 2)

UAV Relief – As more thought and analysis was performed on the bingo fuel

failure modes and the new failsafe decision to sacrifice the UAV, another failsafe

decision option emerged. Depending on the size of the swarm, the swarm operator may

want to have the option to recover the bingo fueled UAV and allow for the swarm to

compensate for the UAV that has returned home. If employed in theatre, this option

would require a great deal of logistics and complicated algorithms to calculate the

optimal swarm coverage without allowing the swarm to be spread too thin.

This approach involves a new operation to allow the nearest UAV to relieve the

bingo fueled UAV. Once the new UAV arrives, the UAV experiencing the bingo fuel

failure mode checks its fuel level and decides to return to launch or auto land. In addition

to the complicated algorithms required to coordinate this activity, the formula to calculate

the bingo fuel would need to be adjusted to include the distance of the nearest UAV. This

would be a constantly changing value as the distances are continuously changes.

 66

Figure 43. MP Code – Bingo Fuel (UAV Relief)

 67

Figure 44. MP Sequence Diagram – Bingo Fuel (UAV Relief)

 68

THIS PAGE INTENTIONALLY LEFT BLANK

 69

VI. CONCLUSION

A. BENEFITS OF STUDY

Understanding the impacts of failure modes and how they can influence a mission

can provide great benefit to mission planning. This not only applies to the swarming

search and rescue (SAR) missions presented in this research, but to any mission where

advanced planning is required. Modeling the CONOPS of the SAR mission in Monterey

Phoenix (MP) proved to provide valuable insight into identifying failure modes and

failsafe behaviors.

A product of this research included a small catalog of prioritized failure modes

and corresponding failsafe behavior for fixed wing UAVs. The failure modes modeled in

this thesis are closely related to the SAR mission, but have applicability in various other

single UAV and swarming UAV missions.

Through this research of modeling failure modes and failsafe behaviors, a

common pattern emerged. This pattern is not design or mission specific and can be used

to model and understand how failure impact a system. By leveraging a straightforward

and repeatable “do activity  activity failed  do failsafe” pattern, the modeler is able to

rapidly insert mitigation behaviors throughout the model for unwanted failure modes.

An interesting and beneficial discovery revealed through this research was the

discovery of several emergent behaviors. While modeling each failure mode and

comparing event traces for each failsafe behaviors, situations and scenarios that would

not have otherwise been revealed, or at least not as quickly, emerged. The bingo fuel

scenario was one of the most notable emergent behaviors. The default assumed behavior

was to return to launch when fuel was running low, but careful examination of the event

traces revealed the importance of comparing mission importance to asset importance.

With the SAR mission, it is obviously more important to locate and potentially save a

person or persons in distress (PID). This shift of importance from asset to mission

revealed an alternate behavior to have the bingo fueled UAV reassess the environment

for PIDs. If a PID is discovered, the UAV will now stay out longer to gather geospatial

 70

data about the PID’s location. This will potentially result in the loss of the UAV, which is

trivial when considering the possibility of saving a person’s life.

B. ITEMS FOR FURTHER STUDY

Monterey Phoenix has many uses outside what was revealed in this thesis. While

working through this study, several areas of opportunity for furthering the research were

identified. The following section discusses these potential follow-on opportunities.

1. Bingo Fuel Expansion

A surprising discovery with the bingo fuel scenario was discovered late in this

thesis research that provides two opportunities to expand the research into MP’s

capabilities. As discussed, MP facilitated the ability to recognize emergent behaviors

through weighing importance of the mission to the asset in the mission.

One of those behaviors was to leverage neighboring UAVs in the swarm to

provide relief to the bingo fueled UAV. This approach would provide continuous

coverage for the search area, as the other UAVs spread out. This approach would require

a significant amount of computational analysis to efficiently manage the swarm. There

are two main follow-on opportunities with this method.

A substantial optimization problem exists for calculating the area of coverage for

each UAV and how that area would change based on the relief situation. Minimizing the

values for the optimal coverage overlap areas would be a worthy objective function.

Additionally, considerations or constraints would need to be made for the time required

for a neighboring UAV to arrive. This value would need to be wrapped into the bingo

fuel calculation to provide ample time for response.

A second opportunity lies in expanding the MP model. As seen in Figure 45, only

the failure and failsafe behaviors for a single UAV are modeled. The model does not

account for which UAV should provide the relief. There exists an opportunity to update

the model to establish relationships between each UAV in the swarm. These relationships

could include the reactionary behavior of the UAV providing relief as well as the swarm

operator.

 71

Figure 45. MP Sequence Diagram – Bingo Fuel (UAV Relief, Scope = 2)

2. Inter-UAV Communications

Monterey Phoenix offers the ability to model the communication transmissions

between actors. An additional area for potential future study is to use MP to model the

inter-UAV communications among swarms through a publish-subscribe pattern. The

current version of firebird.nps.edu contains example 11, a publish-subscribe model that

could be used as a foundation (Auguston and Giammarco 2016).

3. Swarm vs. Swarm Model Expansion

The Department of Defense (DOD) is starting place a fair amount of attention on

the air-to-air combat abilities of swarming unmanned aerial systems (UAS) and more

specifically, how swarms might behave when fighting against other swarms. As briefly

discussed in the small scope hypothesis section, MP has the ability to provide valuable

insight into a swarm vs. swarm. A future research item might be to model the behaviors

 72

within each swarm group and the interactions between adversary swarms to determine the

most optimal way to engage in aerial combat.

4. Monterey Phoenix Phased Modeling Approach

As revealed in the section on failure mode prioritization, the ability to model

multiple failure modes in one schema is beneficial for identifying commonalities, but

imposes a great time cost on MP’s event trace performance. A valuable area of research

would be to address these large models with multiple decision paths. This was briefly

discussed in Chapter III of this thesis, but one recommendation is a phased approach,

where areas of the mission would be extracted and assigned to an individual phase (e.g.,

pre-launch, takeoff, ingress, egress and landing) and modeled discretely. It is important to

watch for behaviors that cross over or effect more than one phase, as that will need to be

accounted for in the model.

5. Cross-Domain Pattern Recognition

A useful outcome of this thesis was the development of a pattern for modeling

failure modes and failsafe behaviors. Patterns can be extremely valuable in developing

expedient behaviors. A follow-on research effort could expand on this principle by

identifying behavior patterns that repeat across different MP architecture models. Once

identified, a playbook of sorts with these reusable patterns could provide benefit to the

MP user community.

 73

APPENDIX: MP CODE

The following section provides a complete plaintext searchable list of all

Monterey Phoenix Code used for the purposes of this thesis.

Swarm SAR Mission - Baseline

SCHEMA Swarm_Search_and_Track

ROOT Swarm_Operator:
 Command_Swarm_to_Commence_Mission
 Monitor_Mission
 Issue_Recovery_Command;

Monitor_Mission:
(*
 Assess_Detected_Object
 (Object_is_Valid_Target | Object_is_Not_Target)
*);

ROOT Swarm:
 {+ UAV +};
 UAV: Commence_Mission
 Search_and_Track_Objects
 End_Mission;

Search_and_Track_Objects:
(*
 (
 Detect_Object Evaluate_Object
 (Target_Found Track_Target |
 Non_target_Found Resume_Target_Search)
)
*);

COORDINATE $a: Command_Swarm_to_Commence_Mission FROM Swarm_Operator
 DO COORDINATE <!> $b: Commence_Mission FROM Swarm
 DO ADD $a PRECEDES $b; OD;
 OD;

COORDINATE <!> $a: Track_Target FROM Swarm,
 $b: Assess_Detected_Object FROM Swarm_Operator
 DO ADD $a PRECEDES $b; OD;

COORDINATE $a: Issue_Recovery_Command FROM Swarm_Operator
 DO COORDINATE <!> $b: End_Mission FROM Swarm
 DO ADD $a PRECEDES $b; OD;
 OD;

ROOT Environment: (* Present_Object_Signature *);

COORDINATE <!> $a: Present_Object_Signature FROM Environment,
 $b: Detect_Object FROM Swarm
 DO ADD $a PRECEDES $b; OD;

Swarm SAR Mission – Control Surface Failure

SCHEMA Swarm_Search_and_Track

 74

ROOT Swarm_Operator:
 Command_Swarm_to_Commence_Mission
 Monitor_Mission
 Issue_Recovery_Command;

Monitor_Mission:
(*
 Assess_Detected_Object
 (Object_is_Valid_Target | Object_is_Not_Target)
*);

ROOT Swarm:
 {+ UAV +};
 UAV: Commence_Mission
 Search_and_Track_Objects
 End_Mission;

Search_and_Track_Objects:
(*
 (
 Detect_Object Evaluate_Object
 (Target_Found Track_Target |
 Non_target_Found Resume_Target_Search) |

 /*Failure Mode*/
 Control_Surface_Failure
 /*Failsafe Behavior*/
 Controller_Reboot
 (
 (Failure_Remains
 Component_Actuation
 (Failure_Remains Attempt_Controlled_Crash |
 Failure_Mitigated Return_to_Launch
)
) |
 Failure_Mitigated Return_to_Launch
)
)
*);

COORDINATE $a: Command_Swarm_to_Commence_Mission FROM Swarm_Operator
 DO COORDINATE <!> $b: Commence_Mission FROM Swarm
 DO ADD $a PRECEDES $b; OD;
 OD;

COORDINATE <!> $a: Track_Target FROM Swarm,
 $b: Assess_Detected_Object FROM Swarm_Operator
 DO ADD $a PRECEDES $b; OD;

COORDINATE $a: Issue_Recovery_Command FROM Swarm_Operator
 DO COORDINATE <!> $b: End_Mission FROM Swarm
 DO ADD $a PRECEDES $b; OD;
 OD;

ROOT Environment: (* Present_Object_Signature *);

COORDINATE <!> $a: Present_Object_Signature FROM Environment,
 $b: Detect_Object FROM Swarm
 DO ADD $a PRECEDES $b; OD;

Swarm SAR Mission – Autopilot Failure

SCHEMA Swarm_Search_and_Track

ROOT Swarm_Operator:
 Command_Swarm_to_Commence_Mission
 Monitor_Mission

 75

 Issue_Recovery_Command;

Monitor_Mission:
(*
 Assess_Detected_Object
 (Object_is_Valid_Target | Object_is_Not_Target)
*);

ROOT Swarm:
 {+ UAV +};
 UAV: Commence_Mission
 Search_and_Track_Objects
 End_Mission;

Search_and_Track_Objects:
(*
 (
 Detect_Object Evaluate_Object
 (Target_Found Track_Target |
 Non_target_Found Resume_Target_Search) |

 /*Failure Mode*/
 Autopilot_Failure
 /*Failsafe Behavior*/
 Attempt_Manual_Control
 (
 Manual_Control_Success Return_to_Launch |
 Manual_Control_Fail Controlled_Crash
)
)
*);

COORDINATE $a: Command_Swarm_to_Commence_Mission FROM Swarm_Operator
 DO COORDINATE <!> $b: Commence_Mission FROM Swarm
 DO ADD $a PRECEDES $b; OD;
 OD;

COORDINATE <!> $a: Track_Target FROM Swarm,
 $b: Assess_Detected_Object FROM Swarm_Operator
 DO ADD $a PRECEDES $b; OD;

COORDINATE $a: Issue_Recovery_Command FROM Swarm_Operator
 DO COORDINATE <!> $b: End_Mission FROM Swarm
 DO ADD $a PRECEDES $b; OD;
 OD;

ROOT Environment: (* Present_Object_Signature *);

COORDINATE <!> $a: Present_Object_Signature FROM Environment,
 $b: Detect_Object FROM Swarm
 DO ADD $a PRECEDES $b; OD;

Swarm SAR Mission – Loss of GPS

SCHEMA Swarm_Search_and_Track

ROOT Swarm_Operator:
 Command_Swarm_to_Commence_Mission
 Monitor_Mission
 Issue_Recovery_Command;

Monitor_Mission:
(*
 Assess_Detected_Object
 (Object_is_Valid_Target | Object_is_Not_Target)
*);

 76

ROOT Swarm:
 {+ UAV +};
 UAV: Commence_Mission
 Search_and_Track_Objects
 End_Mission;

Search_and_Track_Objects:
(*
 (
 Detect_Object Evaluate_Object
 (Target_Found Track_Target |
 Non_target_Found Resume_Target_Search) |

 /*Failure Mode*/
 Loss_of_GPS
 /*Failsafe Behavior*/
 Attempt_Reconnection
 (
 Reconnection_Failed (LT_20_Seconds |
 GT_20_Seconds Controlled_Crash)
 Reconnection_Successful Return_to_Launch
)
)
*);

COORDINATE $a: Command_Swarm_to_Commence_Mission FROM Swarm_Operator
 DO COORDINATE <!> $b: Commence_Mission FROM Swarm
 DO ADD $a PRECEDES $b; OD;
 OD;

COORDINATE <!> $a: Track_Target FROM Swarm,
 $b: Assess_Detected_Object FROM Swarm_Operator
 DO ADD $a PRECEDES $b; OD;

COORDINATE $a: Issue_Recovery_Command FROM Swarm_Operator
 DO COORDINATE <!> $b: End_Mission FROM Swarm
 DO ADD $a PRECEDES $b; OD;
 OD;

ROOT Environment: (* Present_Object_Signature *);

COORDINATE <!> $a: Present_Object_Signature FROM Environment,
 $b: Detect_Object FROM Swarm
 DO ADD $a PRECEDES $b; OD;

Swarm SAR Mission – Geofence Breached

SCHEMA Swarm_Search_and_Track

ROOT Swarm_Operator:
 Command_Swarm_to_Commence_Mission
 Monitor_Mission
 Issue_Recovery_Command;

Monitor_Mission:
(*
 Assess_Detected_Object
 (Object_is_Valid_Target | Object_is_Not_Target)
*);

ROOT Swarm:
 {+ UAV +};
 UAV: Commence_Mission
 Search_and_Track_Objects
 End_Mission;

Search_and_Track_Objects:

 77

(*
 (
 Detect_Object Evaluate_Object
 (Target_Found Track_Target |
 Non_target_Found Resume_Target_Search) |

 /*Failure Mode*/
 Geofence_Breached
 /*Failsafe Behavior*/
 Take_Manual_Control
 (
 Manual_Control_Failed Controlled_Crash |
 Return_to_Launch
)
)
*);

COORDINATE $a: Command_Swarm_to_Commence_Mission FROM Swarm_Operator
 DO COORDINATE <!> $b: Commence_Mission FROM Swarm
 DO ADD $a PRECEDES $b; OD;
 OD;

COORDINATE <!> $a: Track_Target FROM Swarm,
 $b: Assess_Detected_Object FROM Swarm_Operator
 DO ADD $a PRECEDES $b; OD;

COORDINATE $a: Issue_Recovery_Command FROM Swarm_Operator
 DO COORDINATE <!> $b: End_Mission FROM Swarm
 DO ADD $a PRECEDES $b; OD;
 OD;

ROOT Environment: (* Present_Object_Signature *);

COORDINATE <!> $a: Present_Object_Signature FROM Environment,
 $b: Detect_Object FROM Swarm
 DO ADD $a PRECEDES $b; OD;

Swarm SAR Mission – GCS Loss of Link

SCHEMA Swarm_Search_and_Track

ROOT Swarm_Operator:
 Command_Swarm_to_Commence_Mission
 Monitor_Mission
 Issue_Recovery_Command;

Monitor_Mission:
(*
 Assess_Detected_Object
 (Object_is_Valid_Target | Object_is_Not_Target)
*);

ROOT Swarm:
 {+ UAV +};
 UAV: Commence_Mission
 Search_and_Track_Objects
 End_Mission;

Search_and_Track_Objects:
(*
 (
 Detect_Object Evaluate_Object
 (Target_Found Track_Target |
 Non_target_Found Resume_Target_Search) |

 /*Failure Mode*/
 GCS_Loss_of_Link

 78

 /*Failsafe Behavior*/
 Attempt_Reconnect
 (
 Reconnected Resume_Target_Search |
 Not_Reconnected (LT_2_Minutes Wait | GT_2_Minutes Auto_Land)
)
)
*);

COORDINATE $a: Command_Swarm_to_Commence_Mission FROM Swarm_Operator
 DO COORDINATE <!> $b: Commence_Mission FROM Swarm
 DO ADD $a PRECEDES $b; OD;
 OD;

COORDINATE <!> $a: Track_Target FROM Swarm,
 $b: Assess_Detected_Object FROM Swarm_Operator
 DO ADD $a PRECEDES $b; OD;

COORDINATE $a: Issue_Recovery_Command FROM Swarm_Operator
 DO COORDINATE <!> $b: End_Mission FROM Swarm
 DO ADD $a PRECEDES $b; OD;
 OD;

ROOT Environment: (* Present_Object_Signature *);

COORDINATE <!> $a: Present_Object_Signature FROM Environment,
 $b: Detect_Object FROM Swarm
 DO ADD $a PRECEDES $b; OD;

Swarm SAR Mission – Payload Loss of Link

SCHEMA Swarm_Search_and_Track

ROOT Swarm_Operator:
 Command_Swarm_to_Commence_Mission
 Monitor_Mission
 Issue_Recovery_Command;

Monitor_Mission:
(*
 Assess_Detected_Object
 (Object_is_Valid_Target | Object_is_Not_Target)
*);

ROOT Swarm:
 {+ UAV +};
 UAV: Commence_Mission
 Search_and_Track_Objects
 End_Mission;

Search_and_Track_Objects:
(*
 (
 Detect_Object Evaluate_Object
 (Target_Found Track_Target |
 Non_target_Found Resume_Target_Search) |

 /*Failure Mode*/
 Payload_Loss_of_Link
 /*Failsafe Behavior*/
 Controller_Reboot
 (
 (Failure_Remains
 (GCS_Loss_of_Link Auto_Land |
 Take_Manual_Control Return_to_Launch
)
)

 79

 Failure_Mitigated Resume_Target_Search
)
)
*);

COORDINATE $a: Command_Swarm_to_Commence_Mission FROM Swarm_Operator
 DO COORDINATE <!> $b: Commence_Mission FROM Swarm
 DO ADD $a PRECEDES $b; OD;
 OD;

COORDINATE <!> $a: Track_Target FROM Swarm,
 $b: Assess_Detected_Object FROM Swarm_Operator
 DO ADD $a PRECEDES $b; OD;

COORDINATE $a: Issue_Recovery_Command FROM Swarm_Operator
 DO COORDINATE <!> $b: End_Mission FROM Swarm
 DO ADD $a PRECEDES $b; OD;
 OD;

ROOT Environment: (* Present_Object_Signature *);

COORDINATE <!> $a: Present_Object_Signature FROM Environment,
 $b: Detect_Object FROM Swarm
 DO ADD $a PRECEDES $b; OD;

Swarm SAR Mission – Bingo Fuel

SCHEMA Swarm_Search_and_Track

ROOT Swarm_Operator:
 Command_Swarm_to_Commence_Mission
 Monitor_Mission
 Issue_Recovery_Command;

Monitor_Mission:
(*
 Assess_Detected_Object
 (Object_is_Valid_Target | Object_is_Not_Target)
*);

ROOT Swarm:
 {+ UAV +};
 UAV: Commence_Mission
 Search_and_Track_Objects
 End_Mission;

Search_and_Track_Objects:
(*
 (
 Detect_Object Evaluate_Object
 (Target_Found Track_Target |
 Non_target_Found Resume_Target_Search) |

 /* Failure Mode */
 Bingo_Fuel
 /* Failsafe Behavior */
 Check_Fuel_Level
 (
 Is_Returnable Return_to_Launch |
 Is_Not_Returnable Auto_Land
)
)
*);

COORDINATE $a: Command_Swarm_to_Commence_Mission FROM Swarm_Operator
 DO COORDINATE <!> $b: Commence_Mission FROM Swarm
 DO ADD $a PRECEDES $b; OD;

 80

 OD;

COORDINATE <!> $a: Track_Target FROM Swarm,
 $b: Assess_Detected_Object FROM Swarm_Operator
 DO ADD $a PRECEDES $b; OD;

COORDINATE $a: Issue_Recovery_Command FROM Swarm_Operator
 DO COORDINATE <!> $b: End_Mission FROM Swarm
 DO ADD $a PRECEDES $b; OD;
 OD;

ROOT Environment: (* Present_Object_Signature *);

COORDINATE <!> $a: Present_Object_Signature FROM Environment,
 $b: Detect_Object FROM Swarm
 DO ADD $a PRECEDES $b; OD;

Swarm SAR Mission - All Failure Modes

SCHEMA Swarm_Search_and_Track

ROOT Swarm_Operator:
 Command_Swarm_to_Commence_Mission
 Monitor_Mission
 Issue_Recovery_Command;

Monitor_Mission:
(*
 Assess_Detected_Object
 (Object_is_Valid_Target | Object_is_Not_Target)
*);

ROOT Swarm:
 {+ UAV +};
 UAV: Commence_Mission
 Search_and_Track_Objects
 End_Mission;

Search_and_Track_Objects:
(*
 (
 Detect_Object Evaluate_Object
 (Target_Found Track_Target |
 Non_target_Found Resume_Target_Search)

 /*******Failure Modes******/

 /*Control Surface Failure*/
 Control_Surface_Failure Reset_Actuation_Module
 (
 (Failure_Remains Component_Actuation
 (Failure_Remains Controlled_Crash |
 Failure_Mitigated Return_to_Launch
)
) | Failure_Mitigated Return_to_Launch
) |

 /*Autopilot Failure*/
 Autopilot_Failure Reset_Autopilot_Module
 (Failure_Remains Attempt_Manual_Control
 (Manually_Controlled Return_to_Launch |
 Not_Manually_Controlled Controlled_Crash
) |
 Autopilot_Restored Return_to_Launch
) |

 /*Loss of GPS Failure*/

 81

 Loss_of_GPS Reset_GPS_Module Attempt_Reconnect
 (Reconnected Return_to_Launch | Not_Reconnected
 (LT_20_Seconds Wait | GT_20_Seconds Controlled_Crash)
) |

 /*Geofence Breached Failure*/
 Geofence_Breached Attempt_Manual_Control
 (Manually_Controlled Return_to_Launch |
 Not_Manually_Controlled Controlled_Crash
) |

 /*GCS Loss of Link Failure*/
 GCS_Loss_of_Link Reset_GCS Reset_GCS_Module Attempt_Reconnect
 (Reconnected Resume_Target_Search |
 Not_Reconnected (LT_2_Minutes Wait |
 GT_2_Minutes Auto_Land)
) |

 /*Payload Loss of Link Failure*/
 Payload_Loss_of_Link Reset_Payload_Module
 (Failure_Remains Attempt_Manual_Control
 (Manually_Controlled Return_to_Launch |
 Not_Manually_Controlled Auto_Land
) | Failure_Mitigated Resume_Target_Search
) |

 /*Bingo Fuel Failure*/
 Bingo_Fuel Check_Fuel_Level
 (Adequate_Fuel Return_to_Launch |
 Inadequate_Fuel Auto_Land)
)

*);

Auto_Land:
 Track_Current_Position
 Reduce_Altitude
 Enter_Reverse_Helix
 Land
 Power_Down;

Controlled_Crash:
 Track_Current_Position
 Kill_Throttle;

Return_to_Launch:
 Clearout_Existing_Waypoints
 Set_Final_Waypoint
 Travel_to_Final_Waypoint;

COORDINATE $a: Command_Swarm_to_Commence_Mission FROM Swarm_Operator
 DO COORDINATE <!> $b: Commence_Mission FROM Swarm
 DO ADD $a PRECEDES $b; OD;
 OD;

COORDINATE <!> $a: Track_Target FROM Swarm,
 $b: Assess_Detected_Object FROM Swarm_Operator
 DO ADD $a PRECEDES $b; OD;

COORDINATE $a: Issue_Recovery_Command FROM Swarm_Operator
 DO COORDINATE <!> $b: End_Mission FROM Swarm
 DO ADD $a PRECEDES $b; OD;
 OD;

ROOT Environment: (* Present_Object_Signature *);

COORDINATE <!> $a: Present_Object_Signature FROM Environment,
 $b: Detect_Object FROM Swarm
 DO ADD $a PRECEDES $b; OD;

 82

Swarm SAR Mission – Bingo Fuel: UAV Sacrifice

SCHEMA Swarm_Search_and_Track

ROOT Swarm_Operator:
 Command_Swarm_to_Commence_Mission
 Monitor_Mission
 Issue_Recovery_Command;

Monitor_Mission:
(*
 Assess_Detected_Object
 (Object_is_Valid_Target | Object_is_Not_Target)
*);

ROOT Swarm:
 {+ UAV +};
 UAV: Commence_Mission
 Search_and_Track_Objects
 End_Mission;

Search_and_Track_Objects:
(*
 (
 Detect_Object Evaluate_Object
 (Target_Found Track_Target |
 Non_target_Found Resume_Target_Search) |

 /* Failure Mode */
 Bingo_Fuel
 /* Failsafe Behavior */
 Reassess_Environment
 (
 (Target_Found Track_Target) |
 (Non_target_Found Check_Fuel_Level
 (
 Is_Returnable Return_to_Launch |
 Is_Not_Returnable Auto_Land
)
)
)
)
*);

COORDINATE $a: Command_Swarm_to_Commence_Mission FROM Swarm_Operator
 DO COORDINATE <!> $b: Commence_Mission FROM Swarm
 DO ADD $a PRECEDES $b; OD;
 OD;

COORDINATE <!> $a: Track_Target FROM Swarm,
 $b: Assess_Detected_Object FROM Swarm_Operator
 DO ADD $a PRECEDES $b; OD;

COORDINATE $a: Issue_Recovery_Command FROM Swarm_Operator
 DO COORDINATE <!> $b: End_Mission FROM Swarm
 DO ADD $a PRECEDES $b; OD;
 OD;

ROOT Environment: (* Present_Object_Signature *);

COORDINATE <!> $a: Present_Object_Signature FROM Environment,
 $b: Detect_Object FROM Swarm
 DO ADD $a PRECEDES $b; OD;

 83

Swarm SAR Mission – Bingo Fuel: UAV Relief

SCHEMA Swarm_Search_and_Track

ROOT Swarm_Operator:
 Command_Swarm_to_Commence_Mission
 Monitor_Mission
 Issue_Recovery_Command;

Monitor_Mission:
(*
 Assess_Detected_Object
 (Object_is_Valid_Target | Object_is_Not_Target)
*);

ROOT Swarm:
 {+ UAV +};
 UAV: Commence_Mission
 Search_and_Track_Objects
 End_Mission;

Search_and_Track_Objects:
(*
 (
 Detect_Object Evaluate_Object
 (Target_Found Track_Target |
 Non_target_Found Resume_Target_Search) |

 /* Failure Mode */
 Bingo_Fuel
 /* Failsafe Behavior */
 Request_Relief
 Nearest_UAV_Arrives
 Check_Fuel_Level
 (
 Is_Returnable Return_to_Launch |
 Is_Not_Returnable Auto_Land
)
)
*);

COORDINATE $a: Command_Swarm_to_Commence_Mission FROM Swarm_Operator
 DO COORDINATE <!> $b: Commence_Mission FROM Swarm
 DO ADD $a PRECEDES $b; OD;
 OD;

COORDINATE <!> $a: Track_Target FROM Swarm,
 $b: Assess_Detected_Object FROM Swarm_Operator
 DO ADD $a PRECEDES $b; OD;

COORDINATE $a: Issue_Recovery_Command FROM Swarm_Operator
 DO COORDINATE <!> $b: End_Mission FROM Swarm
 DO ADD $a PRECEDES $b; OD;
 OD;

ROOT Environment: (* Present_Object_Signature *);

COORDINATE <!> $a: Present_Object_Signature FROM Environment,
 $b: Detect_Object FROM Swarm
 DO ADD $a PRECEDES $b; OD;

Swarm vs. Swarm – Event Trace Example

SCHEMA Blue_vs_Red
Swarm: {+ UAV +};
UAV: Attack Shoot_enemy_UAV (destroyed | return_to_base);
Shoot_enemy_UAV: (hit | miss);

 84

ROOT Blue: Swarm;
ROOT Red: Swarm;
COORDINATE <!> $h: hit FROM Blue,
 <!> $d: destroyed FROM Red
 DO ADD $h PRECEDES $d; OD;

COORDINATE <!> $h: hit FROM Red,
 <!> $d: destroyed FROM Blue
 DO ADD $h PRECEDES $d; OD;

 85

LIST OF REFERENCES

Arquilla, John, and David Ronfeldt. 2013. Swarming and the Future of Conflict. Santa
Monica, California: Rand Corporation.

Auguston, Mikhail. 2014. Behavior Models for Software Architecture. Monterey, CA:
Naval Postgraduate School.

———. 2009. Monterey Phoenix: Modeling Software and Systems Architecture.
Monterey, CA: Naval Postgraduate School.

———. 2016. System and Software Architecture and Workflow Modeling Language
Manual (Version 2). Monterey, CA: Naval Postgraduate School.

Auguston, Mikhail, and Kristin Giammarco. 2015, Sep. 23. Monterey Phoenix Home.
https://wiki.nps.edu/display/MP/Monterey+Phoenix+Home.

———. 2016, Jun. 13. Monterey Phoenix Analyzer App. http://firebird.nps.edu.

Caswell, Greg, and Ed Dodd. 2014. Improving UAV Reliability. DFR Solutions.
http://www.dfrsolutions.com/wp-content/uploads/2014/09/Improving-Unmanned-
Aerial-Vehicle-UAV-Reliability.pdf.

Dyson, George. 1997. Darwin among the Machines: The Evolution of Global
Intelligence. Boston, MA: Addison-Wesley Longman Publishing.

Farah-Stapleton, Monica, and Mikhail Auguston. 2013. Behavior Modeling of Software
Intensive System Architectures. Procedia Computer Science 20: 270–276.
http://www.sciencedirect.com/science/article/pii/S1877050913010727.

Frantz, Natalie. 2005. ”Swarm Intelligence for Autonomous UAV Control.” Master’s
thesis, Monterey, CA: Naval Postgraduate School.

Freeman, Paul, and Gary Balas. Jun 2014. Actuation Failure Modes and Effects Analysis
for a Small UAV. America Control Conference.

Garcia, Jorge. 2015. ”Un-building Blocks: A Model of Reverse Engineering and
Applicable Heuristics.” PhD dissertation, Monterey, CA: Naval Postgraduate
School.

Giammarco, Kristin. 2012. “Architecture Model Based Interoperability Assessment.”
PhD dissertation. Monterey, CA: Naval Postgraduate School.

———. “Monterey Phoenix Home” August 14, 2014. Accessed January 1, 2015.
https://wiki.nps.edu/display/MP.

https://wiki.nps.edu/display/MP/Monterey+Phoenix+Home
http://www.dfrsolutions.com/wp-content/uploads/2014/09/Improving-Unmanned-Aerial-Vehicle-UAV-Reliability.pdf
http://www.dfrsolutions.com/wp-content/uploads/2014/09/Improving-Unmanned-Aerial-Vehicle-UAV-Reliability.pdf
http://www.sciencedirect.com/science/article/pii/S1877050913010727
https://wiki.nps.edu/display/MP

 86

Giammarco, Kristin, Mikhail Auguston, Clifton Baldwin, Ji’on Crump, and Monica
Farah-Stapleton. 2014. Controlling Design Complexity with the Monterey Phoenix
Approach. Philadelphia, PA: Complex Adaptive Systems.

Giammarco, Kristin, and Mikhail Auguston. November 13 – 15, 2013. Well, You Didn’t
Say Not to! A Formal Systems Engineering Approach to Teaching an Unruly
Architecture Good Behavior. Baltimore, MD: Complex Adaptive Systems
Conference.

Giammarco, Kristin, Spencer Hunt, and Clifford Whitcomb. 2015. An Instructional
Design Reference Mission for Search and Rescue Operations. Monterey, CA:
Naval Postgraduate School, Department of Systems Engineering.

Gore, Ross, and Paul Reynolds, Jr. 2008. “Applying Causal Inference to Understand
Emergent Behavior.” Proceedings of the 40th conference on Winter Simulation,
712–721.

Hunt, Spencer. 2015. ”Model-based Systems Engineering in the Execution of Search and
Rescue Operations.” Master’s thesis, Monterey, CA: Naval Postgraduate School.

Jackson, Daniel. 2006. Software Abstractions: Logic, Language, and Analysis.
Cambridge, MA: The MIT Press

Johnson, Chris. 2012. Technical Challenges For Small UAV Payloads. Electronic
Military and Defense. Accessed May 24, 2016.
http://electronicsmilitarydefense.epubxp.com/i/78772–2nd-edition.

Mellodge, Patricia, and Pushkin Kachroo. 2008. Model Abstraction in Dynamical
Systems: Applications to Mobile Robot Control. Berlin: Springer.

Minar, Nelson, Roger Burkhart, Christopher Langton, Manor Askenazi. 1996. The Swarm
Simulation System: A Toolkit for Building Multi-Agent Simulations. Santa Fe
Institute, Santa Fe.

Palmer, John, and Kristin Giammarco. 2014. Utilization of Monterey Phoenix Modeling
to Expedite Cost, Estimation in Manufacturing Systems. Monterey, CA: Naval
Postgraduate School.

Pilcher, Joanne. 2015. “Generation of Department of Defense Architecture Framework
(DODAF) Models Using the Monterey Phoenix Behavior Modeling Approach.”
Master’s thesis, Monterey, CA: Naval Postgraduate School.

Rabbath, Camille, and Nicolas Léchevin. 2010. Safety and Reliability in Cooperating
Unmanned Aerial Systems. Hackensack, NJ: World Scientific.

http://electronicsmilitarydefense.epubxp.com/i/78772-2nd-edition

87

Steward, Victoria. 2015. “Functional Flow and Event-Driven Methods for Predicting
System Performance.” Master’s thesis, Monterey, CA: Naval Postgraduate
School.

Whitlock, Craig. June 2014. “When Drones Fall from the Sky.” Washington Post.
http://www.washingtonpost.com/sf/investigative/2014/06/20/when-drones-fall-
from-the-sky/

http://www.washingtonpost.com/sf/investigative/2014/06/20/when-drones-fall-from-the-sky/
http://www.washingtonpost.com/sf/investigative/2014/06/20/when-drones-fall-from-the-sky/

 88

THIS PAGE INTENTIONALLY LEFT BLANK

 89

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. Introduction
	A. Problem Statement
	B. Research Questions

	II. Background and Methodology
	A. Approach to Research
	1. Monterey Phoenix
	a. Small Scope Hypothesis

	2. Emergent Behavior

	B. Literature Review
	C. Swarm Defined

	III. The Search and Rescue Model
	A. Applicable UAV for SAR Mission
	B. Actors
	C. The Complete Design Reference Mission
	1. Scaled-Down Approach to Failure Mode Research
	2. Monterey Phoenix Version of SAR

	IV. Failure Modes and Failsafe Behaviors
	A. Failure Modes
	1. Autopilot Failure
	2. Bingo Fuel
	3. Control Surface Malfunction
	4. Ground Control Station (GCS) Loss of Link
	5. Loss of Global Positioning System (GPS)
	6. Loss of Link to Payload
	7. Geofence Breached

	B. Failure Mode Prioritization
	C. Patterns

	V. Analysis of Findings and Results
	A. Key Findings
	1. Event Trace Analysis
	2. Concurrent Failure Mode Modeling
	3. Failsafe Behavior Consistency and Commonality Validation

	B. Surprising and Unexpected Outcomes
	1. Bingo Fuel Emergent Failsafe Behavior

	VI. Conclusion
	A. benefits of study
	B. Items for further study
	1. Bingo Fuel Expansion
	2. Inter-UAV Communications
	3. Swarm vs. Swarm Model Expansion
	4. Monterey Phoenix Phased Modeling Approach
	5. Cross-Domain Pattern Recognition

	Appendix: MP Code
	List of References
	initial distribution list

